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Abstract

A new filtering method based on the procedure of ultradiscritization is applied to a
nonlinear physical system. Numerical results again show the efficiency of the method.

1 Introduction

Kalman filter [1] is a powerful tool to estimate the state of noisy dynamical system from noisy
measurement. It has been applied to various engineering problems. The filter is quite successful
for linear systems. Although many attempts have been done to extend the filter to nonlinear
systems (see, for example [2]), it seems that there is not any systematic way treating nonlinear
systems.

In the preceding paper we have proposed a new filtering method for a nonlinear system
[3], in which the original system is reduced to a piecewise linear one through the procedure
of ultradiscretization [4], [5]. Then the discrete-time Kalman filter is readily applied to the
obtained system by imposing some conditions on system variables and parameters. Although
the nonlinear system we treated in the paper is rather artificial [6], the result of numerical
experiment on the system shows the efficiency of the filter.

In this paper, we apply the new filter to a nonlinear physical system. It is an equation for
nonlinear spring,

d2x

dt2
+ ax+ bx3 = 0, (1)

where x = x(t) is the displacement of a mass and a, b are system parameters. The parameter
a is positive and b is positive for the hard spring and negative for the soft one, respectively. It
is remarked that (1) has a conserved quantity

H(t) =
1

2

(
dx

dt

)2

+
a

2
x2 +

b

4
x4. (2)

In section 2, we introduce a discrete analogue of (1) and rewrite the resulting equation in a
simultaneous system. Then we consider signal and observing processes for the system variables
by introducing a class of noises. Through the procedure of ultradiscretization with parity
variables [5], these processes are reduced to piecewise linear forms, which we call ultradiscrete
processes. In section 3, we first give a brief summary for the discrete time Kalman filter. Then
we construct a Kalman filter for the ultradiscrete processes. We consider three different types
of observing processes. Some results of numerical experiments for the filter are presented in
section 4. Finally, concluding remarks are given in section 5.
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2 Nonlinear system and its ultradiscrete analogue

A discrete analogue of (1) given in [7] is written as

1

δ2
{x(t+δ)−2x(t)+x(t−δ)}+2c1{x(t+δ)+x(t−δ)}+4c2x(t)+2c3x(t)

2{x(t+δ)+x(t−δ)} = 0

(3)

or

x(t+ δ) =
2(1− 2c2δ

2)x(t)

1 + 2c1δ2 + 2c3δ2x(t)2
− x(t− δ), (4)

where c1 + c2 = a/4 and c3 = b/4. The difference eq.(3) has a conserved quantity

H(t) =
1

2δ2
{x(t) − x(t − δ)}2 + c1{x(t)2 + x(t − δ)2} + 2c2x(t)x(t − δ) + c3x(t)

2x(t − δ)2,

(5)

which corresponds to (2) and shows the integrability of (3).
Let us transform (4) into a simultaneous system,

x̃0
k+1 = x̃1

k

x̃1
k+1 =

2(1− 2c2δ
2)x̃0

k+1

1 + 2c1δ2 + 2c3δ2(x̃0
k+1)

2
− x̃0

k

(6)

where x̃0
k = x(t) and x̃1

k = x̃0
k+1 = x(t+ δ). We now consider the signal process,

x̃0
k+1 = ũ0

kx̃
1
k

x̃1
k+1 = ũ1

k

{
2(1− 2c2δ

2)x̃0
k+1

1 + 2c1δ2 + 2c3δ2(x̃0
k+1)

2
− x̃0

k

}
,

(7)

where {ũ0
k} and {ũ1

k} are white noises with average 1 and sufficiently small variance.
For the observing process, we consider three different types:

type 1

{
ỹ0k = w̃0

kx̃
0
k

ỹ1k = w̃1
kx̃

1
k

(8)

type 2 y0k = w̃0
kx̃

0
kx̃

1
k (9)

type 3 y0k = w̃0
k(x̃

0
k + x̃1

k), (10)

where {w̃0
k} and {w̃1

k} are again white noises with average 1 and sufficiently small variance.
In order to ultradiscretize (7)-(10), we introduce varible transformations with ε > 0,

x̃i
k = ξike

Xi
k/ε, ỹik = ηike

Y i
k/ε, ũi

k = eU
i
k/ε, w̃i

k = eW
i
k/ε, δ = e∆/ε, ci = eαi/ε,

where ξik and ηik are sign variables. It is noted that noise variables are always positive due to
the assumption on them. It is also noted that all of the parameters ci, i = 1, 2, 3 are assumed
to be positive which correspond to the case of hard spring. For the simplification, we put

α̌i := 2∆ + αi,

Ak := max[0, α̌1, 2X
0
k + α̌3].
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Then by applying ultradiscretization with parity variables, we obtain ultradiscrete signal pro-
cess, {

ξ0k+1 = ξ1k
X0

k+1 = X1
k + U0

k

(11)

max


(ξ1k+1) +X1

k+1 + Ak+1 − U1
k

S(−ξ0k+1) +X0
k+1

S(ξ0k+1) +X0
k+1 + α̌2

S(ξ0k) +X0
k + Ak+1

 = max


S(−ξ1k+1) +X1

k+1 + Ak+1 − U1
k

S(ξ0k+1) +X0
k+1

S(−ξ0k+1) +X0
k+1 + α̌2

S(−ξ0k) +X0
k + Ak+1

 (12)

where the function S : {1,−1} → {0,−∞} is defined by

S(ξ) =

{
0 (ξ = 1)

−∞ (ξ = −1),
(13)

and ultradiscrete observing process,{
ηik = ξik
Y i
k = X i

k +W i
k

(i = 0, 1) (14)

for type 1, {
η0k = ξ0kξ

1
k

Y 0
k = X0

k +X1
k +W 0

k

(15)

for type 2 and η0k =

{
ξ0k (X0

k ≥ X1
k)

ξ1k (X0
k < X1

k)

Y 0
k = max(X0

k , X
1
k) +W 0

k

(16)

for type 3, respectively. It is remarked that, in the observing process of type 3, observed value
can be indefinite, when ξ0kξ

1
k = −1 and X0

k = X1
k . However, we consider that it never happens

in the noisy system.

3 Kalman filter for ultradiscrete processes

Before applying the Kalman filter to ultradiscrete signal and observing processes, we give a
brief summary of the discrete-time Kalman filter. Let us consider that an n-vector state xk

follows the linear dynamical system disturbed by an r-vector white noise uk,

xk+1 = Akxk +Bkuk (k = 0, 1, 2, . . .), (17)

where an n×n matrix Ak and an n× r matrix Bk are given nonrandom quantities. We assume
that the mean vector ūk and the covariance matrix Uk of the noise vector uk are prescribed.
We do not know xk itself but obtain an m-vector observation x′

k through the observing process

x′
k = Ckxk +wk (k = 0, 1, 2, . . .), (18)
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where Ck is a given n×m matrix and wk is an m-vector white noise. We assume that the mean
vector w̄k and the covariance matrix Wk of the noise vector wk are given. We also assume that
the mean x̄0 and covariance X0 of the initial value x0 are prescribed and that x0, {uk} and
{wk} are independent.

Our problem is to obtain the best estimator x̂k from x′
0, . . . ,x

′
k. The discrete-time Kalman

filter gives an answer in the form of an explicit recurrence formula:

x̂k = x̃k + Pk
tCkWk

−1(x′
k − Ckx̃k − w̄k) (k = 0, 1, 2, . . .), (19)

where

x̃k =

{
x̄0 (k = 0)

Ak−1x̂k−1 +Bk−1ūk−1 (k = 1, 2, 3, . . .)
(20)

Pk =
(
Mk

−1 + tCkWk
−1Ck

)−1
(21)

Mk =

{
X0 (k = 0)

Ak−1Pk−1
tAk−1 +Bk−1Uk−1

tBk−1 (k = 1, 2, 3, . . .).
(22)

Note that Pk is the covariance matrix for the error x̂k−xk and that (21) is the discrete (matrix)
Riccati equation.

It is worthwhile to comment on solutions of the ultradiscrete signal process (11) and (12)
for the deterministic case without noises. If we give the parameters and initial values satisfying
α̌2 < 0，ξ00ξ

1
0 = 1，X0

0 < X1
0，A1 = 2X0

1 + α̌3，X0
0 + X1

0 + α̌3 = 0, then we have the four
periodic solution,

(
(ξ0k, X

0
k)

(ξ1k, X
1
k)

)
=



(
(ξ00 , X

0
0 )

(ξ10 , X
1
0 )

)
(k ≡ 0)(

(ξ10 , X
1
0 )

(−ξ00 , X
0
0 )

)
(k ≡ 1)(

(−ξ00 , X
0
0 )

(−ξ10 , X
1
0 )

)
(k ≡ 2)(

(−ξ10 , X
1
0 )

(ξ00 , X
0
0 )

)
(k ≡ 3).

(23)

In this case the ultradiscrete signal process without noises are expressed by(
ξ0k+1

ξ1k+1

)
=

(
0 1
−1 0

)(
ξ0k
ξ1k

)
(24)(

X0
k+1

X1
k+1

)
=

(
0 1
1 0

)(
X0

k

X1
k

)
. (25)

If we impose the same conditions on the parameters and initial values, the noisy signal
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process is expressed as

(
ξ0k+1

ξ1k+1

)
=

(
0 1

−1 0

)(
ξ0k
ξ1k

)
(
X0

k+1

X1
k+1

)
=

(
0 1

1 0

)(
X0

k

X1
k

)
+

(
1 0

0 1

)(
U0
k

U1
k

) (26)

by assuming the noises do not affect on the max operatin. The noisy observing processes are
also writtten as 

(
η0k
η1k

)
=

(
1 0

0 1

)(
ξ0k
ξ1k

)
(
Y 0
k

Y 1
k

)
=

(
1 0

0 1

)(
X0

k

X1
k

)
+

(
W 0

k

W 1
k

) (27)

for type 1, 
η0k = ξ0kξ

1
k

Y 0
k =

(
1 1

)(X0
k

X1
k

)
+W 0

k

(28)

for type 2 and 
η0k =

{
ξ0k (X0

k ≥ X1
k)

ξ1k (X0
k < X1

k)

Y 0
k =

(
1−(−1)k

2
1+(−1)k

2

)(X0
k

X1
k

)
+W 0

k

(29)

for type 3, respectively.
Let us construct the Kalman filter for these three types:

type 1
For the observing process (27), the filter is given by

X̂k = X̃k + PkWk
−1(Yk − X̃k) (30)

where

X̃k = AX̂k−1 (31)

Pk =
(
Mk

−1 +Wk
−1
)−1

(32)

Mk = APk−1A+ Uk−1 (33)

and A =

(
0 1
1 0

)
. For the estimators of sign variables, it is adequate to take ξ̂0k = η0k and

ξ̂1k = η1k.
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type 2
For the observing process (28), the filter is

X̂k = X̃k + Pk
tCWk

−1(Y 0
k − CX̃k), (34)

where

X̃k = AX̂k−1 (35)

Pk =
(
Mk

−1 + tCWk
−1C

)−1
(36)

Mk = APk−1A+ Uk−1, (37)

and where A =

(
0 1
1 0

)
and C =

(
1 1

)
．For the estimators of sign variables, it is adequate

to take ξ̂0k ξ̂
1
k = η0k. Although ξ̂0k and ξ̂1k themselves are not determined, we can estimate them

from the solutions of the deterministic case.
type 3

For the observing process (29), the filter is

X̂k = X̃k + Pk
tCkWk

−1(Y 0
k − CkX̃k) (38)

where

X̃k = AX̂k−1 (39)

Pk =
(
Mk

−1 + tCkWk
−1Ck

)−1
(40)

Mk = APk−1A+ Uk−1 (41)

and where A =

(
0 1
1 0

)
and Ck =

(
1−(−1)k

2
1+(−1)k

2

)
．For the estimators of sign variables, it

is adequate to take η0k as ξ̂ik if max(X̂0
k , X̂

1
k) = X̂ i

k, i = 0 or 1. Although the other sign variable
is not determined, we can again estimate it from the solutions of the deterministic case.

4 Numerical results

In this section, we give some numerical results. We compute the original state variables through
(26) and the estimators through (27) for type1, (28) for type2, and (29) for type3, respectively.

For simplicity, we generate all noises from N (0, 1/100), where N (µ, σ) is the normal distri-
bution with mean µ and standard deviation σ. We take the system parameters as

α̌1 = −1, α̌2 = −1, α̌3 = 1. (42)

For the initial values, we take

ξ00 = +1, X0
0 = 1, ξ10 = +1, X1

0 = 2. (43)

It is remarked that the initial value X̃0 should be the average of the initial signals, but we take
the initial signals themselves and that M0 should be the covariance marix of the initial signals,
but instead we take the variance of noises (1/1002) times the unit matrix.
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Figure 1: type1: time series of the relative error for ξke
X0

k

Figure 2: type2: time series of the relative error for ξke
X0

k

Figure 1 gives the time series of the relative error between the original signal ξke
X0

k and the
estimator ξ̂0ke

X̂0
k , |ξkeX

0
k − ξ̂0ke

X̂0
k |/|ξ0keX

0
k |, for the estimator of type1. The result shows that the

error is almost always less than 10%.
Figures 2 and 3 are the numerical results for the estimator of type2. It is noted that the

signs of the signals themselves are taken for those of the estimators. The results shows that
the relative error for ξ0kξ

1
k exp(X

0
k +X1

k) is almost always less than 10%, although the relative
error for ξke

X0
k is rather large.

Figures 4 and 5 are the numerical results for the estimator of type3. It is noted that the
signs of the signals are taken for those of the estimators. The results shows that the relative
error for exp(max(X0

k , X
1
k)) is again less than 10%, although the relative error for ξke

X0
k is

rather large.

5 Concluding remarks

We have applied the new filtering method based on the procedure of ultradiscritization to a
physical system expressing nonlinear spring. For the system, we proposed an ultradiscrete
signal process and three types of ultradiscrete observing processes. We would emphasize that
the Kalman filter for the signal and observing processes can be constructed only by imposing
some conditions on system variables and parameters.

Numerical result for the estimator of type1 shows fairly good efficiency of the filtering.

– 33 –



The Bulletin of MCME, Musashino University No.1 (2016)

Figure 3: type2: time series of the relative error for ξ0kξ
1
k exp(X

0
k +X1

k)

Figure 4: type3: time series of the relative error for ξ0k exp(X
0
k)

Figure 5: type3: time series of the relative error for exp(max(X0
k , X

1
k))
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The results for the other two cases are not as good as the type1, although we get rather
good efficiency for some particular system variables. In order to get better filtering results,
it may be important to consider another way of the discretization and suitable choice of the
system variables. In a forthcoming paper, we will propose an improved ultradiscrete signal and
observing processes and present better filtering results.

Since the procedure of constructing the Kalman filter is quite systematic, we may apply
our method to more general problems. It is a future subject to consider much more practical
situation.
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