Musashino University

Musashino University Academic Institutional Repository

Zero-phonon edge anomaly in optical spectra of insulators

メタデータ	言語: jpn	
	出版者:	
	公開日: 2016-08-19	
	キーワード (Ja):	
	キーワード (En):	
	作成者: 阿部, 修治	
	メールアドレス:	
	所属:	
URL	https://mu.repo.nii.ac.jp/records/250	

絶縁体の光学スペクトルにおけるゼロ・フォノン端異常

Zero-phonon edge anomaly in optical spectra of insulators

阿 部 修 治¹ Shuji Abe

電子格子相互作用における次元性の効果を光学スペクトル形状の理論の立場から考察する。音響型フォノンと単距離相互作用する励起子のモデルにおいて光吸収スペクトルを計算すると、次元性の効果はスペクトルのゼロ・フォノン端に顕著に現れること、特に1次元では、金属の軟X線吸収の場合と同じような異常が現れ、ゼロ・フォノン線が存在せず、冪(べき)型の吸収端となることを示す。

1. 絶縁体における電子格子相互作用

絶縁体結晶中の電子・正孔・励起子といった素励起の電子状態が電子格子相互作用 によって受ける影響には2つのタイプがあることが知られている。一つのタイプはポ ーラロン[1]と呼ばれているもので、イオン結晶中の電子が光学的フォノンと電気分極 性の相互作用をする場合がこれにあたる。この場合、結合定数の増加とともに電子の まわりのフォノンの雲が厚くなり、ポーラロンの有効質量が連続的に増大する。もう 一つのタイプはいわゆる自縄自縛(self trapping)状態[2]が現れる場合で、音響型フォ ノンとの変形ポテンシャルによる相互作用の場合がこれに相当する[3]。この場合には 結合定数がある程度大きくなると自由状態とは別に、電子が局所的な歪みに捉えられ て事実上動けなくなる自縄自縛状態が出現する。この状態は結合定数の小さいうちは 自由状態よりもエネルギーの高い準安定状態として存在するが、結合定数がある閾値 を超えると、自由状態よりもエネルギーの低い安定状態となる。この2つのタイプの 相違は相互作用の力の到達距離、つまり長距離力であるか短距離力であるか、という ことに関係している。

以上は現実の3次元結晶での話であるが,系の次元を変えると電子格子相互作用の 効果は様相を異にすることが理論的に知られている[4,5]。同じ短距離型の相互作用に 限定しても、1次元ではもはや自縄自縛型ではなく結合定数とともに連続的に変化す るポーラロン型であり、2次元では自縄自縛型であるものの、3次元の場合と異なり、 準安定状態が存在せず,結合定数がある閾値を超えると自由状態から自縄自縛状態へ と急激に変化すると考えられている。これらはあくまで理論的なモデルであるが、次 元を変えることによって状態の諸相が現れるという意味で,電子格子相互作用の効果 を理解する上で有益である。

では、このように電子格子系の次元を変えた場合に光学スペクトルにはどのような 相違が現れるだろうか。このことを理論的に調べてみることはスペクトル形状論の問

¹ 武蔵野大学工学部数理工学科教授

題として面白い。そこで、この論文では電子格子相互作用における次元性の効果を光 学スペクトルの面において調べ、とりわけそこに現れるゼロ・フォノン端異常とでも 呼ぶべきものを中心に考察する[6]。

2. 光学スペクトル形状と応答緩和

光学スペクトルはスペクトルの母関数からフーリエ変換によって求められることが 多く、この論文でもそれに依るので、まずこの節では議論の前提として、母関数のふ るまいとスペクトル形状の関係を大づかみにしておく。

以下,吸収スペクトルを考えることにする。規格化されたスペクトルをF(E)とする とき,その母関数f(t)は

$$f(t) \equiv \int_{-\infty}^{\infty} dE \ e^{-iEt} F(E)$$
(2.1)

と定義される。ただし $\hbar = 1$ とし、Eは光子エネルギーないし角振動数を表している。 したがって、

$$F(E) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \ e^{iEt} f(t)$$
 (2.2)

である。F(E)が規格化されていることから、f(0) = 1であり、また、f(t)をt = 0のまわりで展開したときの $\frac{(-it)^n}{n!}$ の係数がスペクトルのn次モーメント(E^n のスペクトルについての平均)を与える。

吸収スペクトルの母関数f(t)は次のようにして求められる。簡単のため、系の電気 二重極モーメントを $\pi + \pi^{\dagger}$ とし、電子状態は π^{\dagger} によって励起され、 π によって基底状態 に落ちるものとする。このときf(t)は

$$f(t) = \frac{\langle \pi[t] \ \pi^{\dagger}[0] \rangle_g}{\langle \pi \ \pi^{\dagger} \rangle_g}$$
(2.3)

と表される。ここに $\pi[t]$ などは演算子のハイゼンベルク表示であり、 $\langle \cdots \rangle_g$ は基底状態 での熱平衡期待値を取ることを意味している。式(2.3)はf(t)が系の電気二重極モーメ ントの相関関数であることを表している。より正確には時間t > 0では(t = 0でのパル ス光に対する)応答関数であり、t < 0ではいわば反因果的な応答関数になっていて、 $f(t) = f^*(-t)$ である。

まず, *f*(*t*)の*t* = 0での展開係数がスペクトルのモーメントと結びついていることか ら分かるように,スペクトルの中心や広がりといった大まかな様子は応答関数の初期 過程によって決まっていることになる。このことは*F*(*E*)と*f*(*t*)がフーリエ変換で結び ついている以上,当然の理である。

次にスペクトルの構造と母関数f(t)の $|t| \rightarrow \infty$ でのふるまいとの関連を見るために,

図1. スペクトル形状の4例

いくつかの例を挙げる。

(a) 線スペクトルがある場合 F(E)が $E = E_0$ に $e^{-\sigma}\delta(E - E_0)$ という線スペクトルをもつとき,

$$f(t) \xrightarrow[|t| \to \infty]{} \exp(-iE_0 t - \sigma)$$
(2.4)

であり、最後まで減衰しない残留振動がある。

(b) スペクトル中に冪で表される部分がある場合

F(E)が $E = E_0$ の近傍で $|E - E_0|^{-(1-\alpha)}$ (0 < α < 1)という形で表されるとき, f(t)はtの 冪でゆっくりした減衰をする。

$$f(t) \xrightarrow[|t| \to \infty]{} e^{-iE_0 t} |t|^{-\alpha}$$
(2.5)

また、もしスペクトルに吸収端 E_0 が存在し、そこに線スペクトルがなく、 $E > E_0$ で $|E - E_0|^{\alpha-1} (\alpha > 0)$ という冪で表されるとき、

$$f(t) \xrightarrow[|t| \to \infty]{} e^{-iE_0 t} (it)^{-\alpha}$$
(2.6)

というふるまいをする。これについては後で詳しく論じる。

(c) ローレンツ型ピークがある場合

$$F(E) = \frac{1}{\pi} \frac{\Gamma}{(E - E_0)^2 + \Gamma^2}$$
(2.7)

- 3 -

というローレンツ型のスペクトルに対しては,

$$f(t) = \exp(-iE_0t - \Gamma|t|)$$
(2.8)

という減衰振動型である。

(d) ガウス型ピークがある場合

$$F(E) = \frac{1}{\sqrt{2\pi W^2}} \exp\left[-\frac{(E-E_0)^2}{2W^2}\right]$$
(2.9)

というガウス型のスペクトルの場合,

$$f(t) = \exp\left(-iE_0t - \frac{W^2}{2}t^2\right)$$
 (2.10)

であり、f(t)は $t \ge W^{-1}$ で速やかに減衰する。

このように、スペクトルの微細構造が応答関数の緩和の最終段階と結びついている。 上の例では、先に挙げたものほど微細な構造上の特徴を持ち、そうであるほど応答関 数の緩和の仕方がゆるやかになっている。

次節より具体的に母関数の計算を行うが,その際,

$$K(t) \equiv \ln f(t) \tag{2.11}$$

で定義されるスペクトルのキュムラント母関数を用いて議論する。f(t)がスペクトル のモーメント母関数であるのに対し,K(t)をt = 0のまわりで展開したときの $\frac{(-it)^n}{n!}$ の係 数はスペクトルのn次キュムラントを与える。たとえば、ガウス型のスペクトルならば 3次以上のキュムラントはすべて零である。このK(t)を用いて上の例(a)~(d)をあらた めて表1にまとめておく。

	<i>K</i> (<i>t</i>)の <i>t</i> → ∞でのふるまい	スペクトルの <i>E ≈ E</i> 0での特徴
(a)	$-iE_0t-\sigma$	線スペクトル (強度 e ^{-o})
(b)	$-iE_0t - \alpha \ln t $	冪型(指数 α-1)
(c)	$-iE_0t-\Gamma t $	ローレンツ型(半値半幅 Γ)
(d)	$-iE_0t - \frac{W^2}{2}t^2$	ガウス型(半値半幅 √2ln2W)

表1. K(t)の漸近形とスペクトル構造の関係

- 4 -

3. 励起子フォノン相互作用と光吸収スペクトル

これから考えるのは絶縁体に光を当てて励起子を励起する場合の吸収スペクトルである。簡単のため、1電子励起状態のうち、ただ一つの励起子バンドのみを考え、フォノンとの相互作用は一つの分枝のフォノンとの1次の結合のみを考慮に入れるものとする。波数kの励起子の生成・消滅演算子を a_k^{\dagger} と a_k 、波数qのフォノンの生成・消滅演算子を b_q^{\dagger} と b_q とするとき、この系のハミルトニアンは

$$H = H_0 + H' \tag{3.1}$$

$$H_0 = \sum_{k} \varepsilon_k a_k^{\dagger} a_k + \sum_{q} \omega_q b_q^{\dagger} b_q$$
(3.2)

$$H' = \sum_{q,k} V_q a_{k+q}^{\dagger} a_k (b_{-q}^{\dagger} + b_q)$$
(3.3)

と書かれる。ここに H_0 は相互作用のないハミルトニアンであり、 ϵ_k 、 ω_k はそれぞれ励起 子とフォノンのエネルギーを表す。H'は励起子フォノン相互作用を表し、 V_q は相互作 用係数である。

応答関数(2.3)における光励起の演算子 π^{\dagger} はこの系ではk = 0の励起子生成の演算子 a_0^{\dagger} であるから,

$$f(t) = \langle a_0[t]a_0^{\dagger} \rangle_g \tag{3.4}$$

である。 a_0 のハイゼンベルク表示 $a_0[t]$ は、 a_0 の相互作用表示 $a_0(t) = a_0 e^{-i\epsilon_0 t}$ とユニタ リ演算子

$$U(t) = e^{iH_0 t} e^{-iHt} \tag{3.5}$$

を通して,

 $a_0[t] = U^{\dagger}(t)a_0(t)U(t)$

のように結びついている。基底状態(励起子の存在しない状態)に演算するとき U(t) = 1であることから、(3.4)は

$$f(t) = \langle a_0(t)U(t)a_0^{\dagger} \rangle_g = e^{-i\varepsilon_0 t} \langle \langle 0|U(t)|0 \rangle \rangle_L$$
(3.6)

となる。ただしk = 0の励起子の固有ベクトルを $|0\rangle$ と書き、 $(\dots)_L$ はフォノン状態に関して統計平均をとることを表す。(3.6)のU(t)をH'の相互作用表示H'(t)について展開すると、

$$f(t) = e^{-i\varepsilon_0 t} \left[1 + \sum_{n=1}^{\infty} (-i)^n \int_0^t dt_1 \int_0^{t_1} dt_2 \cdots \int_0^{t_{n-1}} dt_n \left\langle \left\langle 0 | H'(t_1) H'(t_2) \cdots H'(t_n) | 0 \right\rangle \right\rangle_L \right]$$
(3.7)

となる。キュムラント母関数(2.11)のH'(t)に関する展開の場合は次のようになる[7]。

$$K(t) = -i\varepsilon_0 t + \sum_{n=1}^{\infty} K^{(n)}(t)$$
(3.8)

-5-

$$K^{(n)}(t) = (-i)^n \int_0^t dt_1 \int_0^{t_1} dt_2 \cdots \int_0^{t_{n-1}} dt_n \left\langle \left\langle 0 | H'(t_1) H'(t_2) \cdots H'(t_n) | 0 \right\rangle \right\rangle_L^C$$
(3.9)

ただし、 $\langle \dots \rangle^{c}$ はキュムラント相関を意味しており、ここでは励起子のk = 0の状態ベクトルではさみ、フォノンに関して統計平均を取るという操作についてキュムラントということである。これは2節で述べたスペクトルのキュムラントとは別の意味であるが、一般に $t \to 0$ で $H'(t) \to -$ 定であるから、

$$K^{(n)}(t) \sim O(t^n) \quad (t \to 0)$$
 (3.10)

であり,ゆえに $K^{(1)}(t)$ から $K^{(n)}(t)$ までを求めればスペクトルのキュムラント(あるいはモーメント)はn次まで正確に得られたことになる。

さて,(3.3)の相互作用はフォノンの演算子について1次であるからH'(t)の奇数次の 相関関数は零であり, K⁽ⁿ⁾(t)は偶数のnに対してのみ零でない値をもつ。2次の相関関 数をファインマン・ダイヤグラムで表せば図2(a)であり,キュムラント相関関数は相 関関数そのものである。

$$\langle \langle 0 | H'(t_1) H'(t_2) | 0 \rangle \rangle_L^C = \langle \langle 0 | H'(t_1) H'(t_2) | 0 \rangle \rangle_L$$
(3.11)

4次の相関関数は図 2(b),(c),(d)の3つの場合から成るが、そのキュムラント

$$\langle \langle 0 | H'(t_1) H'(t_2) H'(t_3) H'(t_4) | 0 \rangle \rangle_L^C = \langle \langle 0 | H'(t_1) H'(t_2) H'(t_3) H'(t_4) | 0 \rangle \rangle_L - \langle \langle 0 | H'(t_1) H'(t_2) | 0 \rangle \rangle_L \langle \langle 0 | H'(t_3) H'(t_4) | 0 \rangle \rangle_L - \langle \langle 0 | H'(t_1) H'(t_4) | 0 \rangle \rangle_L \langle \langle 0 | H'(t_2) H'(t_3) | 0 \rangle \rangle_L - \langle \langle 0 | H'(t_1) H'(t_3) | 0 \rangle \rangle_L \langle \langle 0 | H'(t_2) H'(t_4) | 0 \rangle \rangle_L$$

$$(3.12)$$

は(b)の場合は零となる。より高次の相関関数においても一般に非固有(improper)なダ イヤグラム(中間状態に初期状態と同じものが現れる場合)に対してはそのキュムラ ントは零である。したがって、キュムラント相関関数を求めるには固有(proper)なダイ ヤグラムのみについてそのキュムラントを計算すればよい。

ここで展開(3.8)の収束性を調べてみる。励起子バンドのエネルギー幅をB,フォノンの平均的なエネルギーをω,相互作用の大きさを

$$D^2 \equiv \langle \langle 0 | (H')^2 | 0 \rangle \rangle_L \tag{3.13}$$

で定義されるDで、それぞれ代表させることにする。(フォノンの分散も $\overline{\omega}$ の程度とする。) このときH'(t)の相関時間 τ_c は

$$\tau_c \sim (\overline{\omega} \ge B \mathcal{O} \times 5)^{-1}$$
 (3.14)

図2. (a)2次と(b)-(d)4次の相関に現れるダイヤグラム (実線は励起子線,破線はフォノン線)

である。n次のキュムラント相関関数(($0|H'(t_1) \cdots H'(t_n)|0$))^C_Lには非固有なダイヤグラムが含まれないため、それが大きな値をもつのは $|t_1 - t_n| \leq \tau_c$ のときである[8]。このことから $|t| \gg \tau_c$ では $K^{(n)}(t)$ はtに比例することが言える。すなわち、

$$K^{(n)}(t) \xrightarrow[|t| \gg \tau_c]{} -i\Delta^{(n)}t - \Gamma^{(n)}|t|$$
(3.15)

の形に表され、係数 $\Delta^{(n)}$, $\Gamma^{(n)}$ の大きさを評価すると、

$$\Delta^{(n)}, \Gamma^{(n)} \sim \mathcal{O}\left(\frac{D^n}{(\overline{\omega} + B)^{n-1}}\right)$$
(3.16)

である。したがって,弱結合

$$D \ll B \pm \hbar \ln D \ll \overline{\omega} \tag{3.17}$$

の場合, $K^{(2)}$ ~1となる時間 |t|~($\overline{\omega} + B$)/ D^2 (これは(3.14), (3.17)より τ_c に比べて+ 分大きい) において

$$K^{(n)}(t) \sim O\left(\left(\frac{D}{\overline{\omega}+B}\right)^{n-2}\right)$$
(3.18)

の収束性をもっている。

一方, B = 0の場合には局在電子系の問題と同等になり, Bloch-De Dominicisの定理により $n \ge 4$ の $K^{(n)}(t)$ はすべて零になる。そこでBが小さいながらも有限の値である場合の収束性を調べてみる。(3.9)における各 $H'(t_i)$ を $t_i = 0$ の近傍で展開して調べると $K^{(n)}(t)$ は $t \rightarrow 0$ で次のように評価される。

$$K^{(2)}(t) \sim -\frac{D^2}{2}t^2[1+O((\overline{\omega}+B)t)]$$

- 7 -

$$K^{(2m)}(t) \sim (Dt)^{2m} O((Bt)^m) \qquad (m \ge 2)$$
(3.19)

ゆえに強結合

$$D \gg B \quad (\hbar \pi \cup D \gtrsim \overline{\omega}) \tag{3.20}$$

の場合 ($\omega \gg D \gg B$ の場合は弱結合(3.17)に含まれる), $K^{(2)} \sim 1$ となる時間 $|t| \sim D^{-1}$ において,

$$K^{(2m)} \sim O\left(\left(\frac{B}{D}\right)^m\right) \tag{3.21}$$

という収束性をもっている。

結局,キュムラント展開法(3.9)による摂動計算は弱結合(3.17)および強結合(3.20)の 場合に収束性が良く,逆に収束性が悪いのは中間結合 $D \approx B \gtrsim \overline{\omega}$ のときである。

4. ゼロ・フォノン線とゼロ・フォノン端異常

まず最も簡単なB = 0すなわち局在電子系の場合から考える。この場合,前節で述べたように,

$$K(t) = -i\varepsilon_0 t + K^{(2)}(t)$$

であり、これを具体的に求めた結果は通常、次のように表される。

$$K(t) = -iE_0t - \sigma + \sigma(t) \tag{4.1}$$

$$E_0 = \varepsilon_0 - \sum_q \frac{|V_q|^2}{\omega_q} \tag{4.2}$$

$$\sigma(t) = \int_0^\infty dE \, s(E) \big[(N(E) + 1)e^{-iEt} + N(E)e^{iEt} \big]$$
(4.3)

$$\sigma = \sigma(0) = \int_0^\infty dE \, s(E)[2N(E) + 1] \tag{4.4}$$

ただし,

$$s(E) \equiv \sum_{q} \frac{|V_{q}|^{2}}{\omega_{q}} \delta(E - \omega_{q})$$
(4.5)

は相互作用スペクトル関数,

$$N(E) = \frac{1}{e^{\beta E} - 1}$$
(4.6)

は熱平衡でのエネルギー Eのフォノンの数分布である。

さて, *d*次元(*d* = 3,2,1)の結晶を考え,相互作用としては音響型フォノンとの変形 ポテンシャルによる短距離相互作用を用いる。フォノンについてはデバイ・モデルを 用いることとし,デバイ切断の波数およびエネルギーをそれぞれ波数とエネルギーの 単位とすると,

$$\omega_{\boldsymbol{q}} = |\boldsymbol{q}| \qquad (0 < |\boldsymbol{q}| \le 1) \tag{4.7}$$

$$V_{\boldsymbol{q}} = \sqrt{\frac{S}{N}\sqrt{|\boldsymbol{q}|}} \tag{4.8}$$

である²。ここにNは結晶格子点の数,Sは相互作用の強さを表すパラメタである。この とき(4.2)より

$$E_0 = \varepsilon_0 - S \tag{4.9}$$

である。相互作用スペクトル関数(4.5)は次元に応じて

$$s(E) = \begin{cases} 3SE & (d = 3) \\ 2S & (d = 2) \\ \frac{S}{E} & (d = 1) \end{cases} \quad (0 < E \le 1) \quad (4.10)$$

となる。

まず、温度は絶対零度とする。このときN(E) = 0だから(4.3)と(4.4)より、

$$\sigma(t) = \int_0^\infty dE \, e^{-iEt} s(E) \tag{4.11}$$

$$\sigma = \sigma(0) = \int_0^\infty dE \, s(E) \tag{4.12}$$

これに(4.10)を代入すると,

$$\sigma(t) = \begin{cases} 3S \frac{1 - e^{-it} - ite^{-it}}{(it)^2} & (d = 3) \\ 2S \frac{1 - e^{-it}}{it} & (d = 2) \\ \infty & (d = 1) \end{cases}$$
(4.13)

$$\sigma = \begin{cases} \frac{3}{2}S & (d = 3) \\ 2S & (d = 2) \\ \infty & (d = 1) \end{cases}$$
(4.14)

² 式(4.8)の相互作用係数は長波長近似でのものであるが、ここではデバイ切断までこの式で表されるというモデルを用いる。

となる。3 次元と2 次元の場合は $|t| \rightarrow \infty \sigma(t) \rightarrow 0$ であり、2 節の例(a)のようにf(t)は(2.4)の漸近形をもち、吸収スペクトルは $E = E_0$ に強度 $e^{-\sigma}$ の線スペクトル(ゼロ・フォノン線)をもつ³。

しかし、1 次元の場合は(4.11),(4.12)の積分が下限で発散してしまう(赤外発散)。 実はK(t)を(4.1)のように表したとき、 $\sigma(t) \rightarrow 0$ ($|t| \rightarrow \infty$)ということが暗黙のうちに期 待されているのであって、そうでない場合は $\sigma \ge \sigma(t)$ に分けることが不適当なのであ る。そこで、

$$\Lambda(t) \equiv \sigma - \sigma(t) \tag{4.15}$$

という量を導入して,

$$K(t) = -iE_0 t - \Lambda(t) \tag{4.16}$$

と書くことにする。1次元の絶対零度の場合,

$$\Lambda(t) = \int_0^\infty dE \, s(E) \left(1 - e^{-iEt} \right)$$

= $S \int_0^\infty dE \, \frac{1 - e^{-iEt}}{E}$
= $S[\gamma + \ln(it) + E_1(it)]$ (4.17)

ここでγはオイラーの定数(γ = 0.5772 ...), *E*₁(z)は積分指数関数[9]

$$E_1(z) \equiv \int_z^\infty \frac{e^{-u}}{u} du \qquad (|\arg z| < \pi)$$

であり, $E_1(it)$ は $|t| \rightarrow \infty$ で0に近づく。したがって,

$$K(t) \xrightarrow[|t| \to \infty]{} -iE_0 t - S(\gamma + \ln(it))$$
(4.18)

となり、これは2節の例(b)の場合に相当する。この場合、

$$f(t) \xrightarrow[|t| \to \infty]{} e^{-\gamma S - iE_0 t} (it)^{-S}$$
(4.19)

であり、これをフーリエ変換したF(E)は $E < E_0$ で0, $E > E_0$ では

$$F(E) \propto (E - E_0)^{S-1}$$
 $(E \to E_0 + 0)$ (4.20)

というふるまいをする。すなわち、1次元の場合は2次元、3次元の場合と異なり、ゼロ・フォノン線が存在せず、吸収端で(4.20)のような冪で表されるスペクトルとなる。 特に、0<S<1のときは吸収端で発散する冪である。このような吸収端の異常は、金属の軟X線吸収における終状態相互作用によるフェルミ端での異常[10-15]と同じ性質

³ もともと電子格子相互作用のない (S = 0)ときは $E = \varepsilon_0$ に線スペクトルがあるのみである。

のものである。

この1次元の絶対零度の場合については、次節でより正確な計算を行って、ゼロ・フォノン端での異常がスペクトルの全体とどうつながっているかを見ることにするが、その前に有限温度の場合について考える。以下、温度も無次元化し、k_BTをデバイ切断エネルギーで割ったものをθと書くことにする。

有限温度ではボーズ分布関数(4.6)が $E \rightarrow 0$ で ~ θ/E という特異性をもつため、(4.3)の $\sigma(t)$ および(4.4)の σ は2次元の場合(s(E) = 2S)にも赤外発散する。そこで、やはり K(t)を(4.16)の形に書き、さらに $\Lambda(t)$ を θ に依らない部分と依る部分に分けて次のよう に書くことにする。

$$\Lambda(t;\theta) = \Lambda(t;0) + \lambda(t;\theta) \tag{4.21}$$

$$\Lambda(t;0) = \int_0^\infty dE \, s(E) \left(1 - e^{-iEt} \right)$$
(4.22)

$$\lambda(t;\theta) = \int_0^\infty dE \, s(E) 2N(E) (1 - \cos Et) \tag{4.23}$$

2 次元の場合,温度に依らない部分 $\Lambda(t;0)$ は $|t| \rightarrow \infty$ で2Sに近づくが,温度に依る部分 $\lambda(t;\theta)$ は $|t| \gg \theta^{-1}$ で(ただし $\theta < 1$ としておく)おおまかに,

$$\lambda(t;\theta) \sim \int_{0}^{\theta} dE \, 2S \cdot 2\frac{\theta}{E} (1 - \cos Et)$$

~ 4S\theta \ln |\thetat| (4.24)

となり, ゆえに母関数は

$$f(t) \sim e^{-iE_0 t - 2S} |\theta t|^{-4S\theta} \qquad (|t| \gg \theta^{-1})$$
 (4.25)

というふるまいをし、2節の例(b)に相当している。このときF(E)は $E = E_0$ の近傍で

$$F(E) \propto \frac{|E - E_0|^{4S\theta - 1} - \theta^{4S\theta - 1}}{1 - 4S\theta} \qquad (|E - E_0| \ll \theta < 1)$$
(4.26)

と評価される。すなわち、2次元の場合、絶対零度で存在したゼロ・フォノン線が有限温度では消えて、その両側に広がった冪型のスペクトル4となる(図3)。

 $[\]theta = 1/4S$ のときは対数的な発散となる。

図3.2次元のゼロ・フォノン線の有限温度における広がり(概略図)

1次元の有限温度の場合、やはり $\theta < 1$ として $|t| \gg \theta^{-1}$ で(4.23)を評価すると、

$$\lambda(t;\theta) \sim \int_{0}^{\theta} dE \frac{S}{E} 2 \frac{\theta}{E} (1 - \cos Et)$$

$$\sim \pi S \theta |t|$$
 (4.27)

なので,

$$f(t) \sim \exp(-iE_0 t - \pi S\theta |t|) \qquad (|t| \gg \theta^{-1})$$
(4.28)

となり、2節の例(c)の場合にあたる。すなわち、吸収スペクトルは絶対零度でS < 1の ときゼロ・フォノン端で冪発散していたものが、有限温度では $|E - E_0| \leq \theta$ の範囲でぼ かされて、幅 $\pi S\theta$ のローレンツ型となる。3次元の場合には、有限温度でも σ および $\sigma(t)$ が収束してゼロ・フォノン線が存在する。

以上のように、局在電子系の吸収スペクトルのゼロ・フォノン近傍は次元性や温度 によってバラエティに富んだ様相を示す。それらをまとめて描いたものが図4であ る。

5. 1次元フォノン場中の局在電子系の光吸収スペクトル

前節では局在電子系の吸収スペクトルのゼロ・フォノン近傍の形状が次元によって どのように変わるかを調べた。本節では問題を1次元の絶対零度の場合に限定し、そ の吸収スペクトルを正確に計算することにより、ゼロ・フォノン端での冪が結合定数 とともに変わっていく様子をスペクトルの全体像とともに明らかにする。

以下ではエネルギーの原点をゼロ・フォノン端にとり、 $E_0 = 0$ と置く。このとき (4.16)より、

$$f(t) = \exp(-\Lambda(t)) \tag{5.1}$$

絶縁体の光学スペクトルにおけるゼロ・フォノン端異常(阿部)

図4. B = 0の場合のスペクトル形状の概要(d: 次元, θ : 温度)

であり, Λ(*t*)は(4.17)で与えられる。そこには積分指数関数が含まれており, *f*(*t*)のフ ーリエ変換(2.2)を解析的に実行することはまったく不可能のように見えるが,次に述 べるような工夫が可能である。

まず(5.1), (4.17)より,

$$f(t) = \exp\left[-S \int_0^1 dE \frac{1 - e^{-iEt}}{E}\right]$$
$$= \exp\left[-S \int_0^t dx \frac{1 - e^{-ix}}{x}\right]$$
(5.2)

これをtで微分すると,

$$f'(t) = -S \frac{1 - e^{-it}}{t} f(t)$$
(5.3)

この両辺にフーリエ変換(2.2)を施すと ($|t| \rightarrow \infty \tilde{c} f(t) \rightarrow 0$ であることを考慮して),

$$-iE F(E) = -\frac{S}{2\pi} \int_{-\infty}^{\infty} dt \ e^{iEt} \frac{1 - e^{-it}}{t} f(t)$$
(5.4)

さらにこの両辺をEで微分することにより,

$$\frac{d}{dE}[E F(E)] = S[F(E) - F(E-1)]$$
(5.5)

というF(E)に対する微分差分方程式が得られる。これを解けば良い。

まず, E < 0 でF(E) = 0という条件を使うと, (5.5)は0 < E < 1で次の解を与える。

$$F(E) = AE^{S-1}$$
 (Aは定数, $0 < E \le 1$)⁵ (5.6)

すなわち,前節の(4.20)が確かめられた。1 < E ≦ 2に対する解は(5.6)を(5.5)に代入し て求めれば良い。一般に I < E ≦ I + 1 (I = 1,2,3, ...)に対するF(E)はI – 1 < E ≦ I に 対するF(E)を用いて,

$$F(E) = E^{S-1} \left[\frac{F(I)}{I^{S-1}} - S \int_{I}^{E} dE' (E')^{-S} F(E'-1) \right]$$
(5.7)

という漸化式から求められることになる。たとえば $S = \frac{1}{2}$, 1, $\frac{3}{2}$, 2, 3 の場合について 0 < E \leq 2に対する*F*(*E*)の解を,規格化因子を除いて書き下すと次のようになる。

_	S	$0 < E \leq 1$	$1 < E \leq 2$
	$\frac{1}{2}$	$\frac{1}{\sqrt{E}}$	$\frac{1}{\sqrt{E}} \big[1 - \ln \big(\sqrt{E} + \sqrt{E-1} \big) \big]$
	1	1	$1 - \ln E$
	$\frac{3}{2}$	\sqrt{E}	$\sqrt{E} - 3\sqrt{E}\ln(\sqrt{E} + \sqrt{E-1}) + 3\sqrt{E-1}$
	2	Ε	$3E-2-2E\ln E$
	3	E^2	$\frac{11}{2}E^2 - 6E + \frac{3}{2} - 3E^2 \ln E$

これらの場合について, *E* > 2では(5.5)ないし(5.7)から数値積分によって解を求め,最後に規格化⁶した*F*(*E*)を図5に示す。*S* = 1を境にして負の指数の冪から正の指数の冪へ移り変わっていく様子がよく分かる。*S*が増えるにつれ冪の指数が大きくなるとともに,スペクトルの中心がゼロ・フォノン端から離れ,次第にガウス型に近づく。

6. 励起子の反跳効果とゼロ・フォノン端

前の2つの節ではB = 0の場合について調べたが、この節では $B \neq 0$ の場合について 考える。相互作用のないときのk = 0の励起子のエネルギーをエネルギーの原点にとり (つまり $\varepsilon_0 = 0$)、 $\varepsilon_k (= \varepsilon_k - \varepsilon_0)$ は正と仮定し、k = 0の近傍で

$$\varepsilon_{\boldsymbol{k}} \sim 4B\,\boldsymbol{k}^2 \qquad (B > 0) \tag{6.1}$$

とする(数係数はここではあまり重要でない)。

キュムラント母関数K(t)のキュムラント展開(3.8),(3.9)の2次の項K⁽²⁾(t)を具体的に

⁵ E = 1での値はF(E)がE > 0で連続であることから決まる。

⁶ 規格化条件 $\int_0^\infty F(E)dE = 1$ は $\sum_{n=1}^\infty nF(n) = S$ と等価であることが示される。

図5. 1次元フォノン場中の局在電子系の光吸収スペクトル(計算結果) (エネルギーEの単位はフォノンのデバイ切断エネルギー)

求めると次のようになる。

$$K^{(2)}(t) = -i\Delta^{(2)}t - \Lambda^{(2)}(t)$$
(6.2)

$$\Delta^{(2)} = -\sum_{q} \left| V_{q} \right|^{2} \left[\frac{N(\omega_{q}) + 1}{\varepsilon_{-q} + \omega_{q}} + \frac{N(\omega_{q})}{\varepsilon_{q} - \omega_{q}} \right]$$
(6.3)

$$\Lambda^{(2)}(t) = \sum_{q} |V_{q}|^{2} \left[\frac{(N(\omega_{q}) + 1)(1 - e^{-i(\varepsilon_{-q} + \omega_{q})t})}{(\varepsilon_{-q} + \omega_{q})^{2}} + \frac{N(\omega_{q})(1 - e^{-i(\varepsilon_{q} - \omega_{q})t})}{(\varepsilon_{q} - \omega_{q})^{2}} \right]$$
(6.4)

これらは*B* = 0の場合の式(4.1)-(4.5)と比較すると、フォノンの放出・吸収の際の励起 子の反跳エネルギーを取り入れた式となっている。

まず,式(6.3),(6.4)の右辺の大括弧内の第2項はフォノン吸収からくる項であるが, $\varepsilon_q = \omega_q$ のところに特異性をもっている。(6.3)の方は主値と解釈すべきだが,(6.4)の方は,

$$\frac{1 - e^{-i(\varepsilon_q - \omega_q)t}}{\left(\varepsilon_q - \omega_q\right)^2} \xrightarrow[|t| \to \infty]{} \pi |t| \delta(\varepsilon_q - \omega_q)$$
(6.5)

を考慮すると,

$$\Lambda^{(2)}(t) \xrightarrow[|t| \to \infty]{} \Gamma^{(2)}|t|$$
(6.6)

という漸近的なふるまいをすることが分かる。ここで

$$\Gamma^{(2)} = \pi \sum_{q} |V_q|^2 N(\omega_q) \delta(\varepsilon_q - \omega_q)$$
(6.7)

である。したがって、B = 0の場合、有限温度でも3次元ではゼロ・フォノン線が存在 し、2次元では低温でゼロ・フォノン点での冪発散があったのに対し、Bがある程度の 大きさになって $\varepsilon_q = \omega_q$ となる波数qが存在するようになると、有限温度でk = 0の励起 子が波数qのフォノンを吸収してk = qなる状態に有限の寿命で散乱されることによ り、 $\Gamma^{(2)}$ の幅の広がりが引き起こされることになる。

これに対し、絶対零度ではフォノンの自然放出しか起こらないので、k = 0が励起子 バンドの底にある場合、その状態が他の状態に遷移することはなく、散乱幅は現れて こない。すなわち、絶対零度で(6.4)は

$$\Lambda^{(2)}(t) = \sum_{q} \left| V_{q} \right|^{2} \frac{1 - e^{-i(\varepsilon_{-q} + \omega_{q})t}}{\left(\varepsilon_{-q} + \omega_{q}\right)^{2}}$$
(6.8)

となり、その被積分関数の特異性はB = 0の場合と同じくq = 0にしか存在しない。この事情はより高次の $\Lambda^{(n)}(t)$ においても変わらない。

qの小さいところでは ω_q がqの1次であるのに対して ε_q は2次であるから、 $\varepsilon_q \ll \omega_q$ となり、(6.8)右辺の分母に出てくる $(\varepsilon_{-q} + \omega_q)^2$ の $q \to 0$ でのふるまいは ω_q だけで決まる。ゆえに $\Lambda^{(2)}(t)$ の $|t| \to \infty$ での解析的性質はB = 0の場合と変わらない。したがって、たとえば1次元の場合、ゼロ・フォノン端での冪はやはり(4.20)で与えられる。ただし、それが成り立つのは $\varepsilon_q \ll \omega_q$ とみなせるエネルギー範囲、すなわち(4.7),(6.1)より(Bが大きい場合)、

$$E - E_0 \ll \frac{1}{4B} \tag{6.9}$$

という範囲に限られる⁷。また、2次元、3次元の場合には、ゼロ・フォノン線が存在 すること、およびフォノン・サイドバンドの出だしの冪の指数は(6.9)の範囲でB = 0の 場合と変わらない。

以上のことはより高次のキュムラント $K^{(n)}(t)$ を考慮に入れても変わらない。その理 由は $K^{(2)}(t)$ の場合の理由と本質的に同じである。すなわち、(6.8)の $\Lambda^{(2)}(t)$ を(4.15)のよ うに σ と $\sigma(t)$ に分けたときの σ に相当する部分

$$\sigma^{(2)} = \sum_{q} \frac{|V_q|^2}{(\varepsilon_{-q} + \omega_q)^2} = \frac{S}{N} \sum_{q} \frac{q}{(4Bq^2 + q)^2}$$
(6.10)

⁷ エネルギーの単位をフォノンのデバイ切断エネルギーに取っていることに注意。

絶縁体の光学スペクトルにおけるゼロ・フォノン端異常(阿部)

の被積分関数をq = 0のまわりでべき展開すると,

$$\sigma^{(2)} = \frac{S}{N} \sum_{q} \frac{1}{q} \left(1 - 8Bq + O((Bq)^2) \right)$$
(6.11)

となる。これをBに依らない部分

$$\sigma_0 = \frac{S}{N} \sum_q \frac{1}{q} \tag{6.12}$$

と, Bがあって初めて出てくる部分

$$\sigma_B^{(2)} = \frac{S}{N} \sum_q \frac{1}{q} \left(-8Bq + O((Bq)^2) \right)$$
(6.13)

とに分けてみると、(6.13)の被積分関数は(6.12)のそれに比べてqの次数が上がっている。したがって、2次元、3次元の場合はもちろん、(6.12)が発散する1次元の場合でも(6.13)の積分は収束する。ゆえに $\sigma_B^{(2)}$ は、ゼロ・フォノン線やゼロ・フォノン端近傍のスペクトルの強度を変化させるものの、そこでの解析的性質には影響を与えない。さらに、4次以上のキュムラント $K^{(2m)}(t)$ においては、 σ に相当する部分 $\sigma^{(2m)}$ のうちBに依らない部分は零であり、すべてBがあって初めて出てくる部分であるが、それらはすべて $\sigma_B^{(2)}$ と同程度の積分の収束性をもっていることが確かめられる。したがって、(6.12)の σ_0 で決定されているスペクトルの吸収端の解析的性質を変えることはない。

このようにして、 $B \neq 0$ の場合の絶対零度でのゼロ・フォノン端の形状は、ゼロ・フ オノン線の存否や冪の指数といった定性的な性質についてはB = 0と同じであって、反 跳効果はゼロ・フォノン線の位置や強度、冪が成り立つEの範囲といった定量的な性質 にのみ現れることが分かった。

7. 結語

以上,音響型フォノンとの変形ポテンシャル相互作用をもつ励起子の光吸収スペクトルの形状について,次元性の効果は吸収端に顕著に現れ,特に1次元の場合,ゼロ・フォノン線が存在せず,吸収端で冪型のスペクトルとなることを明らかにした。 そして,その冪の指数は,B(励起子のバンド幅パラメタ)によらず,S-1(Sは励起子フォノン相互作用の強度)となることを示した。このことを中心に,吸収スペクトルにおける次元性,有限温度,励起子反跳の効果を包括的に論じた。

最後に、ゼロ・フォノン線の性格についてコメントする。3次元と2次元の場合、 絶対零度で吸収端にゼロ・フォノン線が存在するが、それは系の励起状態のうちの最 低エネルギー固有状態への遷移に相当している。ところで1節で述べたように、3次 元と2次元での最低エネルギー状態は自由状態である場合と自縄自縛状態である場合 とがある。 $S > \overline{\omega}, B > \overline{\omega}$ の場合、パラメタの取り方にもよるが、大まかにS < Bでは自 由状態、S > Bでは自縄自縛が最低エネルギー状態である。そのような状態の性格の違

いはゼロ・フォノン線に影響を及ぼし,自縄自縛状態では自由状態に比べてゼロ・フ オノン線の強度はかなり小さくなるはずで,その変化は*S* ≈ *B*を境にして急激に起こる と考えられている[16,17]。しかし,このことはキュムラント展開の低次の項だけから 出てくるものではない⁸。すなわち,こうしたパラメタの変化による励起状態の(した がってスペクトルの)際立った変化というようなことは、キュムラント展開の高次の 項まで加え合わせて初めて現れることになる。

謝辞

東京大学物性研究所において大学院の指導教官であった豊沢豊博士(故人)の熱意 あふれる指導には今なお深く感謝しています。また,当時有益なアドバイスを頂いた 萱沼洋輔博士,那須奎一郎博士,住篤子博士,篠塚雄三博士に感謝します。

参考文献

- [1] H. Fröhlich: Proc. Roy. Soc. A160 (1937) 230; Adv. Phys. 3 (1954) 325.
- [2] L. Loudon: Phys. Zeits. Sowjetunion **3** (1933) 664.
- [3] Y. Toyozawa: Prog. Theor. Phys. **26** (1961) 29.
- [4] D. Emin and T. Holstein: Phys. Rev. Lett. 36 (1976) 664.
- [5] G. Whitfield and P. B. Shaw: Phys. Rev. B 14 (1976) 3346.
- [6] 阿部修治:東京大学大学院理学系研究科修士論文(1979) に基づく。
- [7] R. Kubo: J. Phys. Soc. Jpn. 17 (1962) 1100.
- [8] L. van Hove: Physica **21** (1955) 517.
- [9] たとえば M. Abramowitz and I. A. Stegun, eds.: *Handbook of Mathematical Functions* (Dover, New York, 1972), p.228.
- [10] G. D. Mahan: Phys. Rev. 163 (1967) 612; in *Solid State Physics*, H. Ehrenreich, F. Seitz and D. Turnbull, eds., Vol.29 (Academic, New York, 1974), pp.75-138.
- [11] Y. Mizuno: J. Phys. Soc. Jpn. 25 (1968) 627.
- [12] P. Nozieres and C. T. DeDominicis: Phys. Rev. 178 (1969) 1097.
- [13] J. J. Hopfield: Comments Solid State Phys. 2 (1969) 40.
- [14] P. W. Anderson: Phys. Rev. Lett. 18 (1967) 1049.
- [15] C. B. Duke and G. D. Mahan[:] Phys. Rev. **139** (1965) A1965.
- [16] K. Cho and Y. Toyozawa: J. Phys. Soc. Jpn. 30 (1971) 1555.
- [17] H. Sumi: J. Phys. Soc. Jpn. **32** (1972) 616; J. Phys. Soc. Jpn. **38** (1975) 825.

(原稿提出: 2015年12月21日; 修正稿提出: 2016年1月24日)

⁸ 実際, (6.10)の $\sigma^{(2)}$ はSに比例するのみで, 一般に $\sigma^{(2m)}$ はS^mに比例する。